transformation products of tire rubber antioxidant 6ppd for sale
- Classification:Chemical Auxiliary Agent
- Purity:98.9%
- Type:Antioxidant
- Appearance:Dark brown to dark violet pastilles
- Environmental Protection:Yes
- Application:Rubber Auxiliary Agents
- Production Capacity:200 Metric Tons per Month
- Package:25 kg/bag or as your require
Rubber Antiageing Antiage Antioxidant 4020/6PPD price,this study revealed that sunlight-induced transformation of 6ppd could be an important origin of 6ppd-q in aquatic environments, providing significant insights to the potentially underestimated ecological risks of 6ppd.
6ppd reactions with ozone generate numerous ubiquitous and potentially bioactive transformation products that can be detected in tire rubber particles and roadway environments.
Best Price Rubber Antioxidant 6PPD CAS No.: 793-24-8
we demonstrate the catalytic upgrade of 6ppd to safe chemicals and the valorization of crumb rubber to aromatics and carbon black using microwave-assisted pyrolysis.
chemical characteristics, leaching, and stability of the,We report here the fate and transport-related chemical characterization of the recently discovered environmental toxicant 6ppd-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or "6ppd"). 6ppd is a transformation product of the tire rubber antioxidant 6ppd.
acute toxicity of the tire rubber-derived chemical 6ppd
n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine-quinone (6ppd-quinone), a transformation product of the rubber tire antioxidant 6ppd, has recently been identified as the chemical responsible for urban runoff mortality syndrome in coho salmon, with a median lethal concentration (lc 50) of <0.1 μg/l. subsequent studies have failed to
transformation products of tire rubber antioxidant 6ppd for sale,abstract: 6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppd), during exposure to gas-phase ozone. important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of tps from 6ppd ozonation.
tire-rubber related pollutant 6-ppd quinone: a review of its
the antioxidant 6-ppd has been widely used to prevent cracking and thermal oxidative degradation and to extend the service life of tire rubber. 6-ppd quinone (6-ppdq) is formed via the reaction of 6-ppd with o 3. due to its acute lethality in coho salmon, 6-ppdq has become an emerging pollutant of increasing concern.
rubber antioxidants and their transformation products,as one of the widespread rubber antioxidants, amine antioxidants (ppds: tmppd, dppd, 6ppd, and 6ppdtz) could react with o 3 (in parts per billion volume levels) in the environment and produce ppd-quinone .
transformation products of tire rubber antioxidant 6ppd for sale
6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppd), during exposure to gas-phase ozone.
environmental profiles, hazard identification for sale,6ppd-q in human samples highlight the need for further research on public health. abstract. n-(1,3-dimethylbutyl)-n'-phenyl-p-phenylenediamine (6ppd) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure.
- Are there alternatives to 6PPD as a rubber antioxidant?
- Nevertheless, conclusive studies identifying superior alternatives to 6PPD as a rubber antioxidant remain scarce in the current literature. Urbanization has resulted in an increase in surface runoff, a phenomenon that plays a pivotal role in the transportation of chemicals originating from tire wear into aquatic environments.
- Is 6PPD a toxic oxidant?
- To enhance tire durability, the antioxidant N- (1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is used in rubber, but it converts into the toxic 6PPD quinone (6PPD-Q) when exposed to oxidants like ozone (O 3), causing ecological concerns.
- What causes 6ppd-q in soil and tire rubber wear particles (TRWPS)?
- There is a linkage between 6PPD-Q in soil and tire rubber wear particles (TRWPs), indicating its origin from sources associated with vehicular activities (Klockner et al., 2019). Approximately 50% of TRWPs can infiltrate the soil, releasing bound chemicals like 6PPD (Klockner et al., 2019).
- Which polymer additives are found in drinking water?
- Mauricius Marques dos Santos, Shane Allen Snyder. Occurrence of Polymer Additives 1,3-Diphenylguanidine (DPG), N- (1,3-Dimethylbutyl)-N′-phenyl-1,4-benzenediamine (6PPD), and Chlorinated Byproducts in Drinking Water: Contribution from Plumbing Polymer Materials.