rubber antioxidant 6ppd for tyre/shoes import in lagos
rubber antioxidant 6ppd for tyre/shoes import in lagos
rubber antioxidant 6ppd for tyre/shoes import in lagos
rubber antioxidant 6ppd for tyre/shoes import in lagos
rubber antioxidant 6ppd for tyre/shoes import in lagos
  • Are p phenylenediamine (PPD) antioxidants in recycled tire rubber products toxic?
  • Recently, roadway releases of N, N ′-substituted p -phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized.
  • Are there alternatives to 6PPD as a rubber antioxidant?
  • Nevertheless, conclusive studies identifying superior alternatives to 6PPD as a rubber antioxidant remain scarce in the current literature. Urbanization has resulted in an increase in surface runoff, a phenomenon that plays a pivotal role in the transportation of chemicals originating from tire wear into aquatic environments.
  • What causes 6ppd-q in soil and tire rubber wear particles (TRWPS)?
  • There is a linkage between 6PPD-Q in soil and tire rubber wear particles (TRWPs), indicating its origin from sources associated with vehicular activities (Klockner et al., 2019). Approximately 50% of TRWPs can infiltrate the soil, releasing bound chemicals like 6PPD (Klockner et al., 2019).
  • Does 6PPD react with tire wear particles?
  • In another study, a primary molar yield (per mole 6PPD consumed) of approximately 9.7 % was observed for 6PPD-Q formation from pure 6PPD and about 0.95 % from 6PPD within tire wear particles, suggesting that a substantial mass fraction of 6PPD will ultimately react to form 6PPD-Q (Hu et al., 2022).