6ppd rubber antioxidant: characteristics, applications, combinations
- Classification:Chemical Auxiliary Agent
- Purity:98.9%
- Type:Anti-aging agent
- Appearance:Dark purple pastilles
- Grade:Superior Class
- Application:used in manufacture of tires
- Production Capacity:20000 Metric Ton/Metric Tons per Year
- Package:25 kgs per bag
transformation products of tire rubber antioxidant 6ppd in,6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppdq), during exposure to gas-phase ozone. important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of tps from 6ppd ozonation. to address these data gaps, gas-phase ozonation of 6ppd was.
6ppd (6ppd or n-(1,3-dimethylbutyl)-n'-phenyl-p-phenylenediamine) is a widely used rubber antioxidant that plays a vital role in the production of rubber products. this article aims to provide an overview of 6ppd, its characteristics, its applications in rubber product manufacturing, potential product combinations, and important considerations for commercial procurement. 1. what is 6ppd? 6ppd.
rubber antioxidant 6ppd for tyre, belt
product name: rubber antioxidant 6ppd cas no.: 793-24-8 mf: c18h24n2 einecs no.: 212-344-0 appearance: dark purple granular.coating auxiliaries,rubber chemicals, plastics, special pigments, flavors and fragrances, food additives, cosmetic raw.
end-of-life tire decontamination from 6ppd and upcycling,abstract. n (1,3-dimethylbutyl)- n ′-phenyl- p-phenylenediamine (6ppd) is a ubiquitous rubber antioxidant and antiozonant that extends the lifetime of common rubber products, such as those.
a ubiquitous tire rubber–derived chemical induces acute science
in u.s. pacific northwest coho salmon (oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. by investigating this phenomenon, we identified a highly toxic quinone transformation product of n (1,3-dimethylbutyl)- n ′-phenyl-p-phenylenediamine (6ppd), a.
6ppd wikipedia,6ppd is an organic chemical widely used as stabilising additive (or antidegradant) in rubbers, such as nr, sbr and br; all of which are common in vehicle tires. [1] although it is an effective antioxidant it is primarily used because of its excellent antiozonant performance.
rubber antioxidants: tmq, 6ppd, ippd chemical products
6ppd, or n-1,3-dimethylbutyl-n’-phenyl-p-phenylenediamine, is a synthetic rubber antioxidant widely used in the tire and rubber industry. it provides protection against degradation caused by heat, oxygen, and flex-cracking. 6ppd acts as a stabilizer and antiozonant, preventing the formation of harmful free radicals and extending the service life of rubber products.
transformation products of tire rubber antioxidant 6ppd in,ples.28−32 6ppd is ubiquitously used in tire rubbers as an antioxidant at 0.4−2% by weight,33 where it is designed to quickly react with ground-level o 3 to protect rubber elastomers.34,35 such reactions inevitably form other trans-formation products (tps 21,34
environmental rubber antioxidant 6ppd and toxicological
n-(1,3-dimethylbutyl)-n′-phenyl-p-phenylenediamine (6ppd) serves as an antioxidant utilized as an additive in rubber tires to impede oxidation (cao et al., 2022, jin et al., 2023a).the escalated utilization of antioxidants in rubber and tire-associated products has.
tire-rubber related pollutant 6ppd quinone: a review of its,rubber-derived tire chemicals (rdcs) are an important source of environmental pollutants in urban cities owing to the increasing demand and global production of private cars. p-phenylenediamines (ppds), a class of antioxidants, are added to tire rubber to prevent cracking and thermal oxidative degradation and to extend service life [25].
- Does 6PPD ozonation pose environmental risks?
- 6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation.
- Does 6ppdq occur during ozonation of 6qdi?
- Consistent with prior findings, 6PPDQ (C 18 H 22 N 2 O 2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI ( N - (1,3-dimethylbutyl)- N ′-phenyl- p -quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs.
- What are the data gaps in 6PPD ozonation?
- Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24–168 h and ozonation TPs were characterized using high-resolution mass spectrometry.
- Is 6PPD a toxicity hazard?
- However, this same property facilitates the transfer of 6PPD and its oxidation products into the environment as tire-wear debris. The 6PPD-quinone (6PPD-Q, CAS RN: 2754428-18-5) is of particular and increasing concern, due to its toxicity to fish.