lesotho manufacturing 6ppd antioxidant
lesotho manufacturing 6ppd antioxidant
lesotho manufacturing 6ppd antioxidant
lesotho manufacturing 6ppd antioxidant
lesotho manufacturing 6ppd antioxidant
  • Does 6PPD ozonation pose environmental risks?
  • 6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation.
  • How does microbial Fe (III) reduction affect the formation of 6ppd-q?
  • In the initial aging stage, microbial Fe (III) reduction transforms 6-PPD into 6PPD-Q (Xu et al., 2023b). Subsequently, the formation of 6PPD-Q is facilitated by environmentally persistent free radicals (EPFRs), resulting in the generation of O 2 •-, indicating the potential formation of 6PPD-Q without ozone presence (Xu et al., 2023b).
  • What are the data gaps in 6PPD ozonation?
  • Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24–168 h and ozonation TPs were characterized using high-resolution mass spectrometry.
  • Does 6ppdq occur during ozonation of 6qdi?
  • Consistent with prior findings, 6PPDQ (C 18 H 22 N 2 O 2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI ( N - (1,3-dimethylbutyl)- N ′-phenyl- p -quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs.