transformation products of tire rubber antioxidant 6ppd for sale
- Classification:Chemical Auxiliary Agent
- Purity:99%
- Type:Rubber additive antioxidant
- Appearance:Greyish brown powder
- MOQ:1MT
- Application:tires,rubber shoes and other rubber products
- Storage:Store in a Cool, Dry Place
- Package:Ply Kraft Paper Bag
recent progress in the rubber antioxidants Rubber Auxiliary Agent,we first give a brief introduction of the oxidation process and oxidation mechanism for rubbers. then, we present the strategies to improve the anti-oxidative efficiency of rubber antioxidants. after that, recent advances to minimize the blooming and migration of antioxidants are summarized.
6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppd), during exposure to gas-phase ozone. important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of tps from 6ppd ozonation.
rubber antioxidants and chemical 6ppd
in this review, we first summarize the category and application of rubber antioxidants in the world, and then demonstrate the formation mechanism of their tps in the environment, emphasizing their influence on the ozone oxidative degradation.
widely used chemical rubber antioxidant ippd,N-Isopropyl-N'-phenyl-p-phenylenediamine (often abbreviated ippd) is an organic compound commonly used as an antiozonant in rubbers. like other p-phenylenediamine-based antiozonants it works by virtue of its low ionization energy, which allows it to react with ozone faster than ozone will react with rubber. [2]
mass spectrometry analysis of a ubiquitous tire rubber
n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd) is a globally ubiquitous tire rubber antioxidant. its transformation product, 6ppd-quinone, has been identified as a potent toxicant responsible for the acute mortality of coho salmon in pacific northwest during storm events, a phenomenon called “urban runoff mortality syndrome
rubber antioxidants and their transformation products,in this review, we first summarize the category and application of rubber antioxidants in the world, and then demonstrate the formation mechanism of their tps in the environment, emphasizing their influence on the ozone oxidative degradation.
the effect of antioxidant concentration of n-isopropyl-n
study the influence of high concentrations of antioxidants n-isopropyl-n-phenyl-p-phenylenediamine (ippd) and 2,2,4-trimethyl-1,2-dihydroquinoline (tmq) and the mixing time of the vulcanization physical properties, thermal properties, mechanical properties and structure micro on natural rubber compound has been done.
new evidence of rubber-derived quinones in water, air for sale,by investigating this phenomenon, we identified a highly toxic quinone transformation product of n-(1,3-dimethylbutyl)-n'-phenyl-p-phenylenediamine (6ppd), a globally ubiquitous tire rubber antioxidant.
improvements of lanthanum complex on the thermal-oxidative
mixed antioxidants composed of antioxidant ippd and novel rare earth lanthanum complex were used as an additive to prepare natural rubber (nr) samples.
rubber antioxidants: tmq, 6ppd, ippd chemical products,ippd acts as a stabilizer and antiozonant, preventing the formation of harmful free radicals and extending the service life of rubber products. it is particularly valued for its ability to enhance the durability and performance of tires, automotive belts, hoses, and other rubber goods.
- What are rubber antioxidants?
- Rubber antioxidants are defined as substances that could delay the aging of polymer compounds and prolong the service life of rubber products by inhibiting oxidation, heat, or light radiation . To date, the annual global consumption of rubber antioxidants is over 700,000 tons, accounting for about 40% of the total amount of rubber additives.
- Which rubber antioxidants are used in China?
- Amine antioxidants are the main rubber antioxidants produced and used in China, of which 6PPD and 2,2,4-Trimethyl-1,2-dihydroquinoline (TMQ, RD) have the highest production, accounting for more than 80% of the total amine antioxidants.
- Can a rubber antioxidant enter the environment with tire-wear particles (Twps)?
- Recently, it was reported that the rubber antioxidant N - (1,3-dimethylbutyl)- N′ -phenyl- p -phenylenediamine (6PPD or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (TWPs) [7, 8].
- How does a rubber matrix affect antioxidative performance?
- Obviously, the solubility/dispersity of the antioxidant within the rubber matrix is a key factor in determining the antioxidative performance, and the antioxidative efficiency of antioxidant increases with the dispersion state within the rubber matrix, owing to higher specific surface area available for termination of radicals.