Best Price Rubber Antioxidant 6PPD CAS No.: 793-24-8
- Classification:Chemical Auxiliary Agent
- Purity:97.%
- Type:Anti-aging agent
- Appearance:Dark brown to dark vilet pastilles or flake
- Softening point:80-100℃
- Application:Used in Tires,Industrial Rubber Products
- Production Capacity:50000000t/Year
- Package:25 kg plastic woven bag
tire-rubber related pollutant 6-ppd quinone: a review of its,the antioxidant 6-ppd has been widely used to prevent cracking and thermal oxidative degradation and to extend the service life of tire rubber. 6-ppd quinone (6-ppdq) is formed via the reaction of 6-ppd with o 3. due to its acute lethality in coho salmon, 6-ppdq has become an emerging pollutant of increasing concern.
we demonstrate the catalytic upgrade of 6ppd to safe chemicals and the valorization of crumb rubber to aromatics and carbon black using microwave-assisted pyrolysis.
transformation products of tire rubber antioxidant 6ppd for sale
6ppd reactions with ozone generate numerous ubiquitous and potentially bioactive transformation products that can be detected in tire rubber particles and roadway environments.
rubber anti-aging agent antioxidant 6PPD (4020) supplier,6ppd is an organic chemical widely used as stabilising additive (or antidegradant) in rubbers, such as nr, sbr and br; all of which are common in vehicle tires. although it is an effective antioxidant it is primarily used because of its excellent antiozonant performance.
transformation products of tire rubber antioxidant 6ppd for sale
abstract: 6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppd), during exposure to gas-phase ozone. important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of tps from 6ppd ozonation.
environmental fate of tire-rubber related pollutants 6ppd,To improve tire durability, the antioxidant n-(1,3-dimethylbutyl)-n-phenyl-p-phenylenediamine (6PPD) is used in rubber, but when exposed to oxidants such as ozone (O3), it is converted into toxic 6PPD quinone (6PPD-Q), causing ecological problems.
rubber antioxidants and chemical 6ppd
as one of the widespread rubber antioxidants, amine antioxidants (ppds: tmppd, dppd, 6ppd, and 6ppdtz) could react with o 3 (in parts per billion volume levels) in the environment and produce ppd-quinone .
rubber antioxidants and their transformation products,amine antioxidants are the main rubber antioxidants produced and used in china, of which 6ppd and 2,2,4-trimethyl-1,2-dihydroquinoline (tmq, rd) have the highest production, accounting for more than 80% of the total amine antioxidants.
Rubber Antiageing Antiage Antioxidant 4020/6PPD price
this study revealed that sunlight-induced transformation of 6ppd could be an important origin of 6ppd-q in aquatic environments, providing significant insights to the potentially underestimated ecological risks of 6ppd.
environmental profiles, hazard identification for sale,n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd) serves as an antioxidant utilized as an additive in rubber tires to impede oxidation (cao et al., 2022, jin et al., 2023a).
- Does 6PPD ozonation pose environmental risks?
- 6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation.
- Which PPD-Q compounds are found in tire rubber granules?
- Among the various PPD-Q compounds identified in tire rubber granules (12 μg/g), rubber crumbles (0.3–25 μg/g), and recycled rubber door mats (11–26 μg/g), 6PPD-Q stands out as the most prevalent (Zhao et al., 2023b). Research indicates that sunlight not only catalyzes the formation of 6PPD-Q in TRWPs but also accelerates its breakdown.
- What causes 6ppd-q in soil and tire rubber wear particles (TRWPS)?
- There is a linkage between 6PPD-Q in soil and tire rubber wear particles (TRWPs), indicating its origin from sources associated with vehicular activities (Klockner et al., 2019). Approximately 50% of TRWPs can infiltrate the soil, releasing bound chemicals like 6PPD (Klockner et al., 2019).
- Do PPD antioxidants exist in dust particles?
- However, knowledge of their environmental occurrences and fate remains extremely limited. Herein, we explored the occurrence of six major PPD antioxidants and one newly defined transformation product in dust particles from different environments, including roads, underground parking lots, vehicles, and houses.