ethiopia factory selling chemicals rubber antioxidant 6ppd
ethiopia factory selling chemicals rubber antioxidant 6ppd
ethiopia factory selling chemicals rubber antioxidant 6ppd
ethiopia factory selling chemicals rubber antioxidant 6ppd
ethiopia factory selling chemicals rubber antioxidant 6ppd
  • Does 6PPD ozonation pose environmental risks?
  • 6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation.
  • Is 6PPD recalcitrant under harsh pyrolysis?
  • This demonstrates the recalcitrant nature of 6PPD under harsh pyrolysis conditions and suggests solvent extraction is necessary for its removal. The TGA curve (Supplementary Fig. 11) of 6PPD shows a maximum degradation at ~300 °C and suggests that some 6PPD in the tires may sublime into the liquid product before the rubber degrades.
  • Does acetone remove 6PPD from waste rubber?
  • A parity plot of the measured extraction efficiency versus the calculated 6PPD solubility (Fig. 2e) corroborates that solubility is a crucial determinant of the solvent’s ability to remove 6PPD from waste rubber and confirms that acetone is one of the best solvents while being inexpensive and non-toxic.
  • Does 6ppdq occur during ozonation of 6qdi?
  • Consistent with prior findings, 6PPDQ (C 18 H 22 N 2 O 2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI ( N - (1,3-dimethylbutyl)- N ′-phenyl- p -quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs.