6ppd rubber antioxidant: characteristics, applications, combinations
- Classification:Chemical Auxiliary Agent
- Purity:97.%
- Type:Anti-aging agent
- Appearance:Dark brown to dark vilet pastilles or flake
- Brand Name:Gobiotech
- Application:Petroleum Additives
- Production Capacity: 500 Metric Tons per Month
- Package:25kg in kraft paper bag with PE bag inside
end-of-life tire decontamination from 6ppd and upcycling,n-(1,3-dimethylbutyl)-n′-phenyl-p-phenylenediamine (6ppd) is a ubiquitous rubber antioxidant and antiozonant that extends the lifetime of common rubber products, such as those found in tires.
6ppd (6ppd or n-(1,3-dimethylbutyl)-n'-phenyl-p-phenylenediamine) is a widely used rubber antioxidant that plays a vital role in the production of rubber products. this article aims to provide an overview of 6ppd, its characteristics, its applications in rubber product manufacturing, potential product combinations, and important considerations for commercial procurement. 1. what is 6ppd? 6ppd.
rubber antioxidants: tmq, 6ppd, ippd chemical products
6ppd, or n-1,3-dimethylbutyl-n’-phenyl-p-phenylenediamine, is a synthetic rubber antioxidant widely used in the tire and rubber industry. it provides protection against degradation caused by heat, oxygen, and flex-cracking. 6ppd acts as a stabilizer and antiozonant, preventing the formation of harmful free radicals and extending the service life of rubber products.
transformation products of tire rubber antioxidant 6ppd in,6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppdq), during exposure to gas-phase ozone. important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of tps from 6ppd ozonation. to address these data gaps, gas-phase ozonation of 6ppd was.
sunlight-induced transformation of tire rubber antioxidant n-(1,3
the huge consumption of the tire rubber antioxidant n-(1,3-dimethylbutyl)-n′-phenyl-p-phenylenediamine (6ppd) has resulted in pervasive contamination in aquatic environments. more importantly, the transformation product of 6ppd, i.e., 6ppd-quinone (6ppd-q), is raising increasing concerns due to its high toxicity to aquatic organisms. however, whether and how 6ppd-q can be formed from 6ppd in.
rubber antioxidants tmq particles mdpi,antioxidants are prevalently used during rubber production to improve rubber performance, delay aging, and extend service life. however, recent studies have revealed that their transformation products (tps) could adversely affect environmental organisms and even lead to environmental events, which led to great public concern about environmental occurrence and potential impacts of rubber.
cheap price chemicals rubber antioxidant 6ppd
to examine the effects of o 3 on 6ppd transformation and tp formation in tire rubber matrices, twps were exposed (6 h) to o 3 (360 ± 12 ppbv) or zero-grade air in triplicate glass columns (1 ×.
environmental fate of tire-rubber related pollutants 6ppd and 6ppd-q: a,abstract. to enhance tire durability, the antioxidant n- (1,3-dimethylbutyl)-n′-phenyl-p-phenylenediamine (6ppd) is used in rubber, but it converts into the toxic 6ppd quinone (6ppd-q) when exposed to oxidants like ozone (o 3), causing ecological concerns. this review synthesizes the existing data to assess the transformation, bioavailability.
rubber antioxidant 6ppd for tyre, belt
product name: rubber antioxidant 6ppd cas no.: 793-24-8 mf: c18h24n2 einecs no.: 212-344-0 appearance: dark purple granular.so can be used for tires and other kinds of rubber products, also can be used as heat oxygen stabilizer for polyethylene.
transformation products of tire rubber antioxidant 6ppd in,ples.28−32 6ppd is ubiquitously used in tire rubbers as an antioxidant at 0.4−2% by weight,33 where it is designed to quickly react with ground-level o 3 to protect rubber elastomers.34,35 such reactions inevitably form other trans-formation products (tps 21,34
- Can 6PPD be removed from end-of-life tires?
- We introduce a decontamination strategy that removes 6PPD from end-of-life tires before it enters the broader ecosystem. We demonstrate the catalytic upgrade of 6PPD to safe chemicals and the valorization of crumb rubber to aromatics and carbon black using microwave-assisted pyrolysis. You have full access to this article via your institution.
- What causes 6ppd-q in soil and tire rubber wear particles (TRWPS)?
- There is a linkage between 6PPD-Q in soil and tire rubber wear particles (TRWPs), indicating its origin from sources associated with vehicular activities (Klockner et al., 2019). Approximately 50% of TRWPs can infiltrate the soil, releasing bound chemicals like 6PPD (Klockner et al., 2019).
- What are P-phenylenediamines in tires?
- One category of these chemicals is p-phenylenediamines (PPDs), which serve as antioxidants and are added to tire rubber to prevent cracking, and thermal oxidative degradation, and to prolong the tire lifespan (Hough et al., 2020).
- Are Tire-Rubber pollutants harmful to human health?
- 2. Future research will prioritize assessing the ecological and human health risks associated with tire-rubber related pollutants since it has been detected in human urine (Du et al., 2022). This includes going into the ecological repercussions on soil ecosystems, plant health, and terrestrial as well as aquatic food webs.