recent progress in the rubber antioxidants Rubber Auxiliary Agent
- Classification:Chemical Auxiliary Agent
- Purity:98%
- Type:Rubber antioxidant
- Appearance:Gray Purple or Purple Brown Granular
- Quality:Technical
- Application:Used in Tires,Industrial Rubber Products
- Production Capacity:100 Metric Ton/Metric Tons per Month
- Package:25kg plastic woven bag
rubber antioxidants and chemical 6ppd,recently, it was reported that the rubber antioxidant n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (twps).
the rubber antioxidant market is expected to expand significantly in the future due to the increasing demand for antioxidants in the manufacture of various rubber products used in the tire industry, automotive industry, and others.
4010na rubber antioxidant: enhancing durability
4010na is a widely used rubber antioxidant that plays a crucial role in improving the durability and performance of rubber products. this article provides an in-depth overview of 4010na, highlighting its characteristics, applications in rubber product manufacturing, compatibility with other products, and essential cons
rubber antioxidant 4010 (ippd) with best price,it can be used in airplane, car tyre, bicycle tyre, as well as rubber products and latexes in cable industry. package: packed in kraft paper bags of 25kgs net each with p.e. liner inside, or jumbo bags.
synergistic effects of antioxidant and silica on enhancing
in this work, the thermo-oxidative aging performance of antioxidant n-isopropyl- n ′-phenyl- p -phenylenediamine (4010na)/silica (sio 2)/natural rubber (nr) composite was evaluated by the variations of mechanical properties and chemical structure after aging at 100 ℃.
recent progress in the rubber antioxidants Rubber Auxiliary Agent,in this review, we systematically review the recent progress of antioxidants for rubber. we first give a brief introduction of the oxidation process and oxidation mechanism for rubbers. then, we present the strategies to improve the anti-oxidative efficiency of rubber antioxidants.
effectiveness of different kinds of antioxidants in resin
the effectiveness of several antioxidants belonging to different chemical classes such as p-phenylene diamine (antioxidant 4010na), secondary amine (antioxidant 445), quinoline (antioxidant rd), and phenolic (bht, 1010, 2246) on the performance of a resin-cured biir vulcanizate was investigated.
synthesis and properties of a novel reactive and low,rubber composites containing antioxidants 4020 and 4010na were immersed and extracted, resulting in solutions that were noticeably darker in color than those of the rubber composites with gma-ppda antioxidants, which had also been immersed.
synergistic effects of antioxidant and silica on enhancing
in this work, the thermo-oxidative aging performance of antioxidant n-isopropylN'-phenyl-p-phenylenediamine (4010na)/silica (sio2)/natural rubber (nr) composite was evaluated by the...
rubber antioxidants and their transformation products,recently, it was reported that the rubber antioxidant n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (twps).
- Do antioxidants and their TPS increase environmental risk awareness of rubber products?
- To our knowledge, this is the first review on antioxidants and their TPs in the environment, which may elevate the environmental risk awareness of rubber products and their TPs in the near future.
- How can Antioxidants improve the antioxidative capacity of the rubber matrix?
- Generally speaking, as shown in Figs. 2 and 3, there are two main strategies to improve the antioxidant's antioxidative capability for the rubber matrix: (i) using two or more antioxidants together, and (ii) molecular design of antioxidants. Fig. 2.
- Can a rubber antioxidant enter the environment with tire-wear particles (Twps)?
- Recently, it was reported that the rubber antioxidant N - (1,3-dimethylbutyl)- N′ -phenyl- p -phenylenediamine (6PPD or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (TWPs) [7, 8].
- Are rubber antioxidants a rational design?
- The development of medical antioxidants also inspires the rational design of rubber antioxidants. Recently, Sun, et al. synthesized a novel antioxidant (APPT) containing aromatic amine, thiourea and allyl groups by the reaction between N-phenyl-p-phenylenediamine and allyl isothiocyanate (Fig. 3 b) .