rubber antioxidant 4010 (ippd) with best price
- Classification:Chemical Auxiliary Agent
- Purity:97.%
- Type:Rubber chemicals
- Appearance:Amber to brown flake or granular
- Melting point:45-46°C
- Application:For nitrilebutylbenzene
- Storage:Dry
- Package:1kg/polybag, 25kg/kraftbag
buy wholesale rubber antioxidants in morocco rubber,find the best morocco rubber antioxidants and explore our extensive collection of high-quality rubber antioxidants from morocco. buy wholesale rubber antioxidants in morocco from trusted suppliers.
Rubber antioxidant 4010 (ippd) chemical name: n-isopropyl-n'-phenyl-p-phenylenediamine. Molecular formula: c15h18n2. It is commonly used in tire manufacturing and can significantly improve the aging resistance and overall performance of rubber, helping to improve durability and safety.
rubber antioxidant 4010na(ippd) price
rubber antioxidant 4010na (ippd) a high activity antioxidant for matural and synthetic rubber provides powerful antiozonant and antioxidant properties with excellent high temperature, fatigue and flex resistance to rubber compounds.
rubber antioxidant ippd 4010na 101-72-4 manufacturer,rubber antioxidant ippd offers superior protection against oxidative degradation and ozone attack, making it a top choice for manufacturers seeking to improve the performance and durability of their rubber products.
lanxess chemical rubber antioxidant 4010 na/lg rubber antioxidant with best price
lanxess chemical rubber antioxidant 4010 na/lg rubber antioxidant. categories: other engineering material; additive/filler for polymer. material notes: aging processes, which are caused by oxygen or heat, change the properties of the vulcanizates.
recent progress in the rubber antioxidants Rubber Auxiliary Agent,we first give a brief introduction of the oxidation process and oxidation mechanism for rubbers. then, we present the strategies to improve the anti-oxidative efficiency of rubber antioxidants. after that, recent advances to minimize the blooming and migration of antioxidants are summarized.
rubber antioxidant ippd (4010na) (high-class) with best quality
rubber antioxidant ippd(4010na) (high-class) by henan rtenza is n-isopropyl-n'-phenyl-p-phenylenediamine grade. it acts as an antioxidant. it is suitable for natural rubber and synthetic rubber especially for the prevention of thermal deterioration on nbr.
4010na rubber antioxidant: enhancing durability,4010na is a widely used rubber antioxidant that plays a crucial role in improving the durability and performance of rubber products. this article provides an in-depth overview of 4010na, highlighting its characteristics, applications in rubber product manufacturing, compatibility with other products, and essential cons
antioxidant 4010na (ippd) chemical factory
antioxidant 4010na (ippd) by chemical factory acts as an antioxidant. it is n-isopropyl-n'-phenyl-p-phenylenediamine. it is highly efficient and can be easily oxidized and discolored on the exposure to air and light.
rubber antioxidant ippd(4010na) rubber accelerator,ippd (4010na) rubber antioxidant, a high activity antioxidant for matural and synthetic rubber provides powerful antiozonant and antioxidant properties with excellent high temperature.
- What are the future trends of rubber antioxidants?
- The perspectives on the future trends of rubber antioxidants have been presented. Elastomers, especially diene-rubbers containing unsaturated double carbon bonds in the main chains, are vulnerable to thermal/oxygen aging, which would make the elastomers less elastic and result in earlier failure of the elastomer products.
- Are rubber antioxidants a rational design?
- The development of medical antioxidants also inspires the rational design of rubber antioxidants. Recently, Sun, et al. synthesized a novel antioxidant (APPT) containing aromatic amine, thiourea and allyl groups by the reaction between N-phenyl-p-phenylenediamine and allyl isothiocyanate (Fig. 3 b) .
- Can rubber antioxidants contain rare-earth ions?
- The recently reported rubber antioxidants containing rare-earth ions are summarized in Fig. 4, for instance, Sun et al. prepared a novel hindered phenol rare-earth complex (DTSm) (Fig. 4 f) by a simple and green method using 3,5-di-tert-butyl-4-hydroxybenzoic acid (DT) and samarium chloride hexahydrate (SmCl 3 ·6H 2 O) via coordination reaction.
- Which antioxidants are used in rubber vulcanization?
- The amine and phenolic antioxidants are the most widely used rubber antioxidants (Fig. 1 b and c). Generally, the phenolic antioxidants have poor antioxidative efficiency (compared to amine antioxidants) and they can delay vulcanization, but they cause little discoloration problems.