rubber antioxidants and their transformation products
- Classification:Chemical Auxiliary Agent
- Purity:98%
- Type:Rubber chemicals
- Appearance:Gray Purple or Purple Brown Granular
- Origin:China
- Application:Tire/Rubber industries
- Production Capacity:100 Metric Ton/Metric Tons per Month
- Package:25kg plastic woven bag
environmental fate of tire-rubber related pollutants 6ppd,To improve tire durability, the antioxidant n-(1,3-dimethylbutyl)-n-phenyl-p-phenylenediamine (6PPD) is used in rubber, but when exposed to oxidants such as ozone (O3), it is converted into toxic 6PPD quinone (6PPD-Q), causing ecological problems.
recently, it was reported that the rubber antioxidant n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (twps).
rubber antioxidants and chemical 6ppd
recently, it was reported that the rubber antioxidant n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (twps).
transformation products of tire rubber antioxidant 6ppd for sale,6ppd, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (tp), 6ppd-quinone (6ppd), during exposure to gas-phase ozone. important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of tps from 6ppd ozonation.
recent progress in the rubber antioxidants Rubber Auxiliary Agent
in this review, we systematically review the recent progress of antioxidants for rubber. we first give a brief introduction of the oxidation process and oxidation mechanism for rubbers. then, we present the strategies to improve the anti-oxidative efficiency of rubber antioxidants.
recent progress in the rubber antioxidants Rubber Auxiliary Agent,we first give a brief introduction of the oxidation process and oxidation mechanism for rubbers. then, we present the strategies to improve the anti-oxidative efficiency of rubber antioxidants. after that, recent advances to minimize the blooming and migration of antioxidants are summarized.
recent progress in the rubber antioxidants Rubber Auxiliary Agent
after 168 hours of thermal oxidative aging test at 100℃, styrene‐butadiene rubber with 10 wt % surface thiol functionalized mesoporous silica nanorods loaded with 4020 (msn‐sh‐4020) shows
rubber antioxidant 4020 6ppd for Tyres,applications include the use in pneumatic tire components, solid tires, belts, hoses, cable, automotive mounts, bushing and general mechanical products that are exposed to continuous and intermittent dynamic operating conditions and require protection from ozonation.
production and use of typical rubber antioxidants
recently, it was reported that the rubber antioxidant n-(1,3-dimethylbutyl)N'-phenyl-p-phenylenediamine (6ppd or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (twps) .
(pdf) rubber antioxidants and their transformation products,antioxidants are prevalently used during rubber production to improve rubber performance, delay aging, and extend service life. however, recent studies have revealed that their transformation...
- Can a rubber antioxidant enter the environment with tire-wear particles (Twps)?
- Recently, it was reported that the rubber antioxidant N - (1,3-dimethylbutyl)- N′ -phenyl- p -phenylenediamine (6PPD or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (TWPs) [7, 8].
- Are rubber antioxidants toxic?
- Recent advances in the toxicity issue of rubber antioxidant With the increasing popularity of automobiles, tire wear particles, generated from tire material during use on roads, would ultimately enter the eco-system, such as soil, aquatic environment, etc .
- Do Antioxidants improve the performance of rubber?
- Conclusions and Future Perspectives Antioxidants are widely used to improve the performance of rubber, and their production, especially 6PPD, is annually maintained at a high level .
- How does a rubber matrix affect antioxidative performance?
- Obviously, the solubility/dispersity of the antioxidant within the rubber matrix is a key factor in determining the antioxidative performance, and the antioxidative efficiency of antioxidant increases with the dispersion state within the rubber matrix, owing to higher specific surface area available for termination of radicals.