rubber antioxidant 6ppd for cables at high quality
rubber antioxidant 6ppd for cables at high quality
rubber antioxidant 6ppd for cables at high quality
rubber antioxidant 6ppd for cables at high quality
rubber antioxidant 6ppd for cables at high quality
  • Are there alternatives to 6PPD as a rubber antioxidant?
  • Nevertheless, conclusive studies identifying superior alternatives to 6PPD as a rubber antioxidant remain scarce in the current literature. Urbanization has resulted in an increase in surface runoff, a phenomenon that plays a pivotal role in the transportation of chemicals originating from tire wear into aquatic environments.
  • Are rubber antioxidants toxic?
  • Recent advances in the toxicity issue of rubber antioxidant With the increasing popularity of automobiles, tire wear particles, generated from tire material during use on roads, would ultimately enter the eco-system, such as soil, aquatic environment, etc .
  • Can rubber antioxidants contain rare-earth ions?
  • The recently reported rubber antioxidants containing rare-earth ions are summarized in Fig. 4, for instance, Sun et al. prepared a novel hindered phenol rare-earth complex (DTSm) (Fig. 4 f) by a simple and green method using 3,5-di-tert-butyl-4-hydroxybenzoic acid (DT) and samarium chloride hexahydrate (SmCl 3 ·6H 2 O) via coordination reaction.
  • Are rubber antioxidants a rational design?
  • The development of medical antioxidants also inspires the rational design of rubber antioxidants. Recently, Sun, et al. synthesized a novel antioxidant (APPT) containing aromatic amine, thiourea and allyl groups by the reaction between N-phenyl-p-phenylenediamine and allyl isothiocyanate (Fig. 3 b) .