how much iran rubber antioxidant 4020 for tire and belt
how much iran rubber antioxidant 4020 for tire and belt
how much iran rubber antioxidant 4020 for tire and belt
how much iran rubber antioxidant 4020 for tire and belt
how much iran rubber antioxidant 4020 for tire and belt
  • Can a rubber antioxidant enter the environment with tire-wear particles (Twps)?
  • Recently, it was reported that the rubber antioxidant N - (1,3-dimethylbutyl)- N′ -phenyl- p -phenylenediamine (6PPD or antioxidant 4020), a typical tire rubber antioxidant, could enter the surrounding environment together with tire-wear particles (TWPs) [7, 8].
  • How does a rubber matrix affect antioxidative performance?
  • Obviously, the solubility/dispersity of the antioxidant within the rubber matrix is a key factor in determining the antioxidative performance, and the antioxidative efficiency of antioxidant increases with the dispersion state within the rubber matrix, owing to higher specific surface area available for termination of radicals.
  • What are the TPS of rubber antioxidants?
  • The TPs of rubber antioxidants have been observed in some studies under environmental conditions. As one of the widespread rubber antioxidants, amine antioxidants (PPDs: TMPPD, DPPD, 6PPD, and 6PPDTZ) could react with O 3 (in parts per billion volume levels) in the environment and produce PPD-quinone .
  • Are rubber antioxidants a rational design?
  • The development of medical antioxidants also inspires the rational design of rubber antioxidants. Recently, Sun, et al. synthesized a novel antioxidant (APPT) containing aromatic amine, thiourea and allyl groups by the reaction between N-phenyl-p-phenylenediamine and allyl isothiocyanate (Fig. 3 b) .